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Subring Test

A nonempty subset S of a ring R is a subring of R iff for all a, b ∈ S we have

a− b ∈ S ab ∈ S

Zero Divisors and Integral Domains

If ab = 0 with a, b nonzero, then a, b are called zero divisors. If a ring is commutative with unity,
and has no zero divisors, the ring is an integral domain.

Subdomain Test

A nonempty subset S of an integral domain D is a subdomain of D iff S is a subring of D, and
1 ∈ S is also the unity in D.

Units and Fields

If an element in a ring with unity has a multiplicative inverse, it is called a unit. If on a commutative
ring with one, all nonzero elements are units, then the ring is a field.

Note that being a unit implies it is not a zero divisor.

Units as a Cyclic Subgroup

The set of all units R× over a ring R is a cyclic subgroup of R under multiplication.

Finite Integral Domains

Finite integral domains are fields. Zp is a field iff p is prime.

Subfield Test

A nonempty subset S of a field F is a field under the same 2 operations as F iff for all a, b ∈ S we
have

a− b ∈ S ab−1 ∈ S ∀b ∕= 0

Characteristics

The characteristic of R, denoted chR, is the least positive integer n s.t. n · a = 0 for all a ∈ R. If
no such n exists, we say chR = 0.

Note chZn = n. If D an integral domain, then chD either 0 or a p prime.
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Ring Homomorphisms and Kernels

A map φ : R → R′ is a ring hom if ∀a, b ∈ R we have

φ(a+ b) = φ(a) + φ(b) φ(ab) = φ(a)φ(b)

the kernel of a ring hom φ is the set of element that gets mapped to 0 under φ. It has following
properties

• φ(0) = 0

• φ(−a) = −φ(a)

• φ(n · a) = n · φ(a) where · is the scalar multiple by an integer

• φ is one to one iff kerφ = {0}

• φ(an) = φ(a)n where the power is a scalar multiple of products

• if A a subring of R, then φ(A) is a subring of φ(R)

• φ(1) is the unity in φ(R)

• R commutative implies φ(R) commutative

Ring Isomorphisms

If ring hom one to one and onto, then it is ring iso. Commutative rings, integral domains and fields
transfer under a ring iso.

Ideals

I is an ideal in R if I is a subring of R, and xr, rx ∈ I for all r ∈ R, x ∈ I. The kernel of any ring
hom is an ideal in its domain.

Ideals and Fields

Let R comm ring with identity. Then R a field iff the only ideals in R are {0}, the trivial ideal,
and R, the improper ideal.

Ideals and Cosets

Let I subring of R. Then I an ideal in R iff (a+ I)(b+ I) = (ab+ I) is a well-defined operations
on the cosets of I in R.
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Quotient Rings and Operations on Cosets

R/I, the quotient ring, is a ring under the operations defined by

(a+ I) + (b+ I) = (a+ b) + I (a+ I)(b+ I) = ab+ I

for all a+ I, b+ I ∈ R/I.

First Isomorphism Theorem

Let φ a ring hom. Then R/ kerφ ∼= φ(R). For any ideal I in R, there is an onto ring hom
φ : R → R/I with kerφ = I. Read 7.2.19, 7.2.20.

Prime Ideals

A nontrivial proper ideal I ∕= R in a commutative ring R is called a prime ideal if ab ∈ I implies
a ∈ I or b ∈ I for all a, b ∈ R.

Maximal Ideals

A nontrivial proper ideal I ∕= R in a ring R is called a maximal ideal if there are no other ideals
between I and R.

Ideals and Types of Rings

• I is a prime ideal in R iff R/I an integral domain.

• I is a maximal ideal in R iff R/I a field.

Consequently, maximal ideal implies prime ideal.

Field of Quotients / Field of Fractions

Let D be an integral domain. Then there exists a field F consisting of quotients a/b, where a, b ∈ D
and b ∕= 0. F is called the field of fractions of D.

The field of fractions F of an integral domain D is the smallest field containing D. Any two fields
of fractions of an integral domain D are isomorphic.

Subdomains and Isomorphism with Old Friends

Let D be an integral domain. Then there exists a subdomain D′ ⊆ D s.t.

1. if chD = 0, then Z ∼= D′ ⊆ D

2. if chD = p, then Zp
∼= D′ ⊆ D
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Sunfields and Isomorphism with Old Friends

Let F be a field. Then there exists a subfield F ′ ⊆ F s.t.

1. if chF = 0, then Q ∼= F ′ ⊆ F

2. if chF = p, then Zp
∼= F ′ ⊆ F

Rings and Polynomial Rings

A polynomial ring R[x] of R is a ring containing R and all the finite degreed polynomials with
coefficients in R. The following is true,

• R[x] is a ring containing the ring R as a subring

• R commutative implies R[x] commutative

• R shares unity 1 with R[x]

• R shares characteristic with R[x]

• D integral domain implies D[x] integral domain. Moreover, the units in D[x] are the same as
the units in D, and any f, g ∈ R[x] has deg fg = deg f + deg g

• F a field, then F [x] is an integral domain, but not a field

Division Algorithm on Polynomial Rings

Let F be a field, and f, g ∈ F [x], with g ∕= 0. Then there are unique q, r ∈ F [x] s.t.

• f = qg + r

• r = 0 or deg r < deg g

if there is q s.t. f = qg, then g | f , read as g divides f , and f is a multiple of g.

Greatest Common Divisors of Two Polynomials

Let F a field, f, g ∈ F [x] not both 0. Then there is a GCD d s.t. there is u, v ∈ F [x] s.t.

d = uf + vg

The GCD we are interested in, denoted gcd(f, g), is the monic d.

Factor Theorem and Reminder Theorem

Let f ∈ F [x] with F field. f(a) = 0 iff (x− a) divides f . More generally, f(a) is the remainder on
dividing f by (x− a).
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Finite Roots of a Polynomial

Let f ∈ F [x] where F a field. Then f has at most deg f number of roots in F .

Conjugates as Roots

Let f ∈ Q[x]. If a+ b
√
c a root of f , where a, b ∈ Q and

√
c /∈ Q, then a− b

√
c also a root of f .

Irreducible Polynomials

Let F be a field and f a nonconst poly in F [x]. We say f is irred over f if there are no g, h ∈ F [x]
with degree of both g, h lower than f .

If f irred and f | gh, then f | g or f | h.

Unique Factorization Theorem

Let F be a field and f a nonconstant polynomial. Then we can write

f = up1p2 · · ·

where u nonzero and pi irred polys. This is unique up to reordering.

Reducibility and Linear Factors

Let F a field and f ∈ F [x]. If f degree 2 or 3, then f reducible over F iff f has a root in F .

Rational Roots Theorem

Let f ∈ Z[x]. Let a = r/s a root of f in Q, where r, s coprime. Then r | a0 and s | an in Z.

Contents, Primitive Polynomials and Gauss’ Lemma

In Z[x], the GCD of all coefficients of a polynomial is its content. If the GCD is one, the polynomial
is primitive. The product of primitive polynomials is primitive. Moreover, it factors into two polys
of degrees r, s in Q[x] iff it factors into polys of the same degrees in Z[x].

Eisenstein’s Criterion

Let f ∈ Z[x]. Then if there is prime p s.t.

• p ∤ an

• p | ai for all i < n

5



Important Results PMATH 334 W23

• p2 ∤ a0

then f irred over Q.

Cyclotomic Polynomials

xn − 1 is divisible by x− 1:

xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x+ 1)

if p prime, then the cyclotomic polynomial for p is

Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1

which is always irred over Q by Eisenstein’s.

Irreducibility in Z and Zn

Let f ∈ Z[x] of degree at least 1, let p prime, and let f̄ be f mod p. Then if

• deg f = deg f̄

• f̄ irred over Zp

then f irred over Q.

Principal Ideals and PIDs

An ideal is principal if it can be generated by a single element a. If so, it can be written as 〈a〉.
An integral domain D is a principal ideal domain if every ideal in D is a principal ideal.

Any field F is a PID by the results from ideals.

Prime and Maximal Ideals in Polynomial Rings

Let F be a field. An ideal I = 〈p(x)〉 is a prime ideal in F [x] iff p(x) irred over F . I is an maximal
ideal if it is nontrivial.

Divisions of Irreducible Polynomials

Let f, g ∈ F [x] irred polys, s.t. f ∕= cg for any unit c ∈ F [x]. Then

• gcd(f, g) = 1

• there are u, v ∈ F [x] s.t. 1 = uf + vg

• u is the multiplicative inverse of f in F/ 〈g〉
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Chinese Remainder Theorem

Let F be a field and let
Ii = 〈gi(x)〉

with i = {1, . . . , n}, be ideals in F [x] s.t. all gis are paiwise coprime. Let f1, . . . , fn be polys in
F [x], then

• there is f ∈ F [x] s.t. f − fi ∈ Ii for all i

• f uniquely determined up to congruence modulo the ideal J = 〈


gi(x)〉

Corollary to CRT, Polynomial Rings modulo Primal Ideals

Let F be a field and let Ii = 〈gi(x)〉 be ideals and gi pairwise coprime, and let J = 〈


gi(x)〉. Then

F [x]/J ∼= F [x]/I1 × · · ·× F [x]/In

Euclidean Domains

An integral domain D is called a Euclidean Domain if there is a function ν : D \ {0} → Z+ ∪ {0}
from the set of nonzero elements of D to the set of nonnegative integers s.t.

• for nonzero x, y ∈ D, ν(x) ≤ ν(xy)

• given a, b ∈ D with b nonzero, there are q, r ∈ D s.t. a = qb + r with either r = 0 or
ν(r) < ν(b)

where q is called the quotient and r is called the remainder in the division.

The domain of Gaussian Integers Z[i] is a Euclidean domain.

Every ED is a PID.

GCDs on EDs

Let D be a ED and a, b ∈ D two nonzero elements of D. Then there exists an element d ∈ D s.t.

• d is a GCD of a and b

• there are u, v ∈ D s.t. d = ua+ vb

Associates

Let R be a commutative ring with unity. a, b ∈ R are associates if a = ub for some unit u ∈ R.
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Properties of Euclidean Functions ν

Let D be a ED. Then

• ν(1) ≤ ν(a) for all nonzero a ∈ D

• ν(1) = ν(a) iff a a unit in D

Irreducibility vs Primality

Let D be an integral domain and a ∈ D nonzero nonunit. Then

• a irreducible if a = xy implies x or y unit.

• a prime if a | xy implies a | x or a | y.

In an integral domain, every prime is irreducible.

In a principal ideal domain D, p ∈ D irred iff I = 〈p〉 is a maximal ideal in D. Moreover, a nonzero
p is prime iff it is irred.

Unique Factorization Domain

An integral domainD is said to be a unique factorization domain (UFD) if the following are satisfied

• every nonzero nonunit a ∈ D can be written as the product of irreducibles pi ∈ D:

a = p1p2 . . . pn

• if
a = p1 . . . pn = r1 . . . rs

where pi, rj irred, then r = s and qj can be renumbered so that pi and qi are associates in D

in a UFD, a nonzero element is prime iff it is irred.

Every PID is a UFD.

Ascending Chain Condition

Let D be a PID, and let I1 ⊆ I2 ⊆ I3 be an ascending chain of ideals. Then there exists a positive
integer n s.t. Im = In for all m ≥ n.

The Ascending Chain Condition (ACC) holds in an integral domain D if D contains nos trictly
increasing infinite chain of ideals.
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Existance of Irred Divisor

Let D be a PID and a ∈ D nonzero nonunit. Then a has at least one irred divisor. Moreover, it is
a product of irreds.

Generalized Gauss’ Lemma

Let D be a UFD and let f, g primitive polys in D[x]. Then fg is primitive.

UFD through Polynomial Rings

If D a UFD then D[x] a UFD.

Primes over Gaussian Integers

Let z = a+ bi ∈ Z[i] be s.t. ν(z) = a2 + b2 is prime in Z, then z = a+ bi is prime in Z[i].

Consequently, if p can be written as a sum of squares, i.e. p = a2 + b2, then a+ bi is prime in Z[i].

Fermat’s Theorem on Sums of Squares

Let p be an odd prime. Then

p = a2 + b2 ⇐⇒ p ≡ 1 mod 4

Primes in Gaussian Integers

If a+ bi a prime in Z[i], then so is a− bi.

If a, b nonzero and a+ bi prime in Z[i], then a2 + b2 prime in Z.

All the primes in Z[i] are exactly the following elements and their associates:

• 1 + i and 1− i

• p prime with p ≡ 3 mod 4

• a+ bi and a− bi, where a2 + b2 = p a prime with p ≡ 1 mod 4

Vector Spaces

A set V equipped with two operations (addition and multiplication) is a vector space over F if V
is an Abelian group under addition, and the following holds for all a, b ∈ F , u, v ∈ V :

• av ∈ V is defined
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• a(v + w) = av + aw

• a(bv) = (ab)v

• 1v = v

v ∈ V is called a vector. The additive identity on V is the zero vector 0. An element a ∈ F is a
scalar, and the operation of forming av is called scalar multiplication.

Properties of Scalar Multiplication

Let V be a vector space over a field F . Then for any scalar c ∈ F and any vector v ∈ V

• cv = 0 iff c = 0 ∈ F or v = 0 ∈ V

• (−c)v = −(cv) = c(−v)

Subspace Test

A nonempty subset U of a vector space V over a field F is a subspace of V iff for all c ∈ F and
u,w ∈ U we have

• u− w ∈ U

• cu ∈ U

which is very similar to a subring test.

Any ideal in F [x] where F a field is a subspace of F [x].

Linear Independence, Bases and Dimensions

The set {vi} with vi ∈ V where V VS over F is linearly independent over F if

c1v1 + c2v2 + · · ·+ cnvn = 0

implies that ci = 0 for all i. In other words, the only linear combination of the vectors which leads
to zero is trivial.

Such set of vectors is called a basis for V over F if the span of this set is V .

Any two basis of V over F have the same cardinality.

The cardinality of a basis of such vector spaces is called the dimension of V over F . If there exists
no finite basis for V , then V is infinite dimensional over F .
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Extendability of Base

Let V be a vector space over a field F with dimF V = n, and let {u1, . . . , ur} be a linearly
independent set of vectors in V . Then

• r ≤ n

• if r < n then we can add n− r vectors to the set to form a basis for V

Let U , the spans of {u1, . . . , ur} be a subspace of V . Then

• dimF U ≤ dimF V

• dimF U = dimF V iff U = V

Extension Fields

Let E a field and F ⊆ E a subfield of E. Let α ∈ E. Let

F [α] = {f(α) : f(x) ∈ F [x]} F (α) = {f(α)/g(α) : f(x), g(x) ∈ F [x], g(α) ∕= 0}

then

• F [α] is the smallest subring of E containing F and α

• F (α) is the smallest subfield of E containing F and α

specifically, F (α) is an extension field of F , and is read F adjoining α.

Kronecker’s Theorem

Let F be a field and p(x) a nonconst polynomial in F [x]. Then there is an extension field of F , E,
s.t. α ∈ E is a root of p(x).

Algebraic and Transcendental Numbers

Let F be a field and E an extension field, F ⊆ E. Then an element α ∈ E is said to be algebraic
over F if there exists a nonzero polynomial f ∈ F [x] s.t. f(α) = 0. Otherwise, α is transcendental
over F .

Minimal Polynomials and Degrees of Algebraic Numbers

Let F ⊆ E fields and α ∈ E algebraic over F . Then there is a unique monic polynomial p(x) ∈ F [x]
s.t.

• p(α) = 0

• p(x) irred over F
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• if f ∈ F [x] s.t. f(α) = 0, then p(x) | f(x)

such p(x) is called the minimal polynomial of α over F . The degree of α over F is

degF (α) = deg p(x)

Priperties of Minimal Polynomials

Let F ⊆ E be fields, α ∈ E algebraic over F with degF (α) = n, and let p(x) be the minimal
polynomial of α. Then

• F (α) ∼= F [x]/ 〈p(x)〉

•

1,α,α2, . . . ,αn−1


is a basis for the vector space F (α) over F

• dimF F (α) = degF (α) = deg p(x)

Algebraic and Finite Extensions

Let E be an extension field of a field F . Then E is

• an algebraic extension of F if every element α ∈ E is algebraic over F

• a finite extension of F if E is a finite-dimensional vector space over F . In this case, the
dimension n of E over F by [E : F ] = n, and we call n the degree of E over F

If E is a finite extension of F , then it is an algebraic extension of F . Moreover,

degF (α) ≤ [E : F ]

for every α ∈ E.

Degrees of Extensions and Elements Within

Let E be a finite extension field of a field F and K a finite extension field of E. Then K is a finite
extension field of F and

[K : F ] = [K : E][E : F ]

Moreover, let α,β ∈ E, with degF (α) = n, degF (β) = m. Then n,m | [E : F ], and [F (α,β) : F ] ≤
nm.

Algebraic Numbers

Let Q̄ = {α ∈ C : α algebraic over Q}. Then Q̄ is called the field of algebraic numbers.
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Splitting Fields

Let f ∈ F [x] nonconst, and E extension field of F . f splits over E if in E[x], f can be written as
a unit times monic linear factors:

f(x) = u(x− α1)(x− αn)

note u ∈ F . A subfield K of E containing F is called the splotting field in E of f over F if

• f splits over K

• K is the smallest subfield of E containing F over which f(x) splits

More precisely, the splitting field in this case is K = F (α1, . . . ,αn).

For any nonconstant f ∈ F [x], it has a splitting field E that is a finite extension field of F .
Moreover,

[E : F ] ≤ n!

any two splitting fields of f are isomorphic to each other.

10.3.20

This is too long. Don’t wanna write it down.

Algebraic Closure

A field F is algebraically closed if every nonconst f ∈ F [x] has a root in F . Moreover, it is
equivalent to the following:

• f ∈ F [x] irred iff deg f = 1

• every nonconst poly in F [x] splits over F

• if E is an algebraic extension of F , then E = F

The Fundamental Theorem of Algebra states that C is algebraically closed.

List of Facts

For any nonconst f ∈ Q[x], there is a splitting field K ⊆ C.

If E is an extension field of C and [E : C] > 1, then E is not an algebraic extension of C and [E : C]
is infinite.

Let f ∈ R[x] nonconst, then if f irred, it has degree 1 or 2.
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Finite Fields

Let F be a finite field, then

• the order of F is a prime power: |F | = pn, where p = chF .

• F is an algebraic extension Zp(α), where α is the root of an irred monic poly q(x) ∈ Zp[x] of
degree n

Moreover, |F | = pn iff F is a splitting field of f(x) = xp
n − x over f ∈ Zp[x]

Multiplicity and Roots

Let F be a field, f(x) ∈ F [x] a poly, and f(α) = 0 for an α in some extension field of F . Then α
has multiplicity > 1 iff f ′(α) = 0.

More Results on Finite Fields

Given any prime p and any positive integer n,

• there exists a finite field F of order pn

• any two fields of order pn are isomorphic

Constructible Numbers

The set of constructible real numbers C is an extension field of Q and a subfield of R. Specifically,
let α be a constructible real number with

√
α > 0, then

√
α is constructible.
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