Important Results PMATH 334 W23

Subring Test
A nonempty subset S of a ring R is a subring of R iff for all a,b € S we have

a—beS abe S

Zero Divisors and Integral Domains

If ab = 0 with a, b nonzero, then a,b are called zero divisors. If a ring is commutative with unity,
and has no zero divisors, the ring is an integral domain.

Subdomain Test

A nonempty subset S of an integral domain D is a subdomain of D iff S is a subring of D, and
1 € § is also the unity in D.

Units and Fields

If an element in a ring with unity has a multiplicative inverse, it is called a unit. If on a commutative
ring with one, all nonzero elements are units, then the ring is a field.

Note that being a unit implies it is not a zero divisor.

Units as a Cyclic Subgroup

The set of all units R* over a ring R is a cyclic subgroup of R under multiplication.

Finite Integral Domains

Finite integral domains are fields. Z,, is a field iff p is prime.

Subfield Test

A nonempty subset S of a field F is a field under the same 2 operations as F iff for all a,b € S we
have

a—beS ableS Vb#£0
Characteristics

The characteristic of R, denoted ch R, is the least positive integer n s.t. n-a = 0 for all a € R. If
no such n exists, we say ch R = 0.

Note chZ,, = n. If D an integral domain, then ch D either 0 or a p prime.
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Ring Homomorphisms and Kernels
A map ¢ : R — R’ is a ring hom if Va,b € R we have
Pla+b) =da) +o(b)  ¢(ab) = p(a)o(b)

the kernel of a ring hom ¢ is the set of element that gets mapped to 0 under ¢. It has following
properties

e »(0)=0

e 6(~a) = —4(a)

e ¢(n-a)=n-¢(a) where - is the scalar multiple by an integer
e ¢ is one to one iff ker ¢ = {0}

e ¢(a™) = ¢(a)™ where the power is a scalar multiple of products
e if A a subring of R, then ¢(A) is a subring of ¢(R)

e ¢(1) is the unity in ¢(R)

e R commutative implies ¢(R) commutative

Ring Isomorphisms

If ring hom one to one and onto, then it is ring iso. Commutative rings, integral domains and fields
transfer under a ring iso.

Ideals

I is an ideal in R if [ is a subring of R, and ar,rz € I for all r € R, x € I. The kernel of any ring
hom is an ideal in its domain.

Ideals and Fields

Let R comm ring with identity. Then R a field iff the only ideals in R are {0}, the trivial ideal,
and R, the improper ideal.

Ideals and Cosets

Let I subring of R. Then I an ideal in R iff (a + I)(b+ I) = (ab+ I) is a well-defined operations
on the cosets of I in R.
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Quotient Rings and Operations on Cosets
R/I, the quotient ring, is a ring under the operations defined by
(a+I)+(b+I)=(a+b)+1 (a+I1)b+I)=ab+1

foralla+I,b+ 1€ R/I.

First Isomorphism Theorem

Let ¢ a ring hom. Then R/ker¢ = ¢(R). For any ideal I in R, there is an onto ring hom
¢ : R — R/I with ker ¢ = I. Read 7.2.19, 7.2.20.

Prime Ideals

A nontrivial proper ideal I # R in a commutative ring R is called a prime ideal if ab € I implies
a€lorbelforall a,b € R.

Maximal Ideals

A nontrivial proper ideal I # R in a ring R is called a maximal ideal if there are no other ideals
between I and R.

Ideals and Types of Rings

e [ is a prime ideal in R iff R/I an integral domain.

e [ is a maximal ideal in R iff R/I a field.

Consequently, maximal ideal implies prime ideal.

Field of Quotients / Field of Fractions

Let D be an integral domain. Then there exists a field F' consisting of quotients a/b, where a,b € D
and b # 0. F is called the field of fractions of D.

The field of fractions F' of an integral domain D is the smallest field containing D. Any two fields
of fractions of an integral domain D are isomorphic.
Subdomains and Isomorphism with Old Friends

Let D be an integral domain. Then there exists a subdomain D’ C D s.t.
1. ifchD =0, then Z= D' C D
2. if ch D = p, then Z, = D' C D
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Sunfields and Isomorphism with Old Friends
Let F be a field. Then there exists a subfield F’ C F s.t.
1. ifchF=0,then Q= F' C F

2. ifchF =p, then Z, 2 F' C F

Rings and Polynomial Rings

A polynomial ring R[z] of R is a ring containing R and all the finite degreed polynomials with
coefficients in R. The following is true,

e R[z] is a ring containing the ring R as a subring
e R commutative implies R[z] commutative

e R shares unity 1 with R[z]

R shares characteristic with R[x]

D integral domain implies D|[z| integral domain. Moreover, the units in D[z] are the same as
the units in D, and any f, g € R[x] has deg fg = deg f + degyg

F a field, then F'[z] is an integral domain, but not a field

Division Algorithm on Polynomial Rings

Let F be a field, and f,g € F[z], with g # 0. Then there are unique ¢, € Fz] s.t.
e f=qg+r
e r=0ordegr <degg

if there is ¢ s.t. f = qg, then g | f, read as g divides f, and f is a multiple of g.

Greatest Common Divisors of Two Polynomials
Let F' a field, f,g € F[z] not both 0. Then there is a GCD d s.t. there is u,v € F[z] s.t.
d=uf+vg

The GCD we are interested in, denoted ged(f, g), is the monic d.

Factor Theorem and Reminder Theorem

Let f € F[x] with F field. f(a) =0 iff (x — a) divides f. More generally, f(a) is the remainder on
dividing f by (z — a).
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Finite Roots of a Polynomial

Let f € F[x] where F a field. Then f has at most deg f number of roots in F.

Conjugates as Roots

Let f € Q[z]. If a + by/c a root of f, where a,b € Q and /¢ ¢ Q, then a — by/c also a root of f.

Irreducible Polynomials

Let F be a field and f a nonconst poly in F[z]. We say f is irred over f if there are no g,h € F|[z]
with degree of both g, h lower than f.

If f irred and f | gh, then f | g or f | h.

Unique Factorization Theorem
Let F be a field and f a nonconstant polynomial. Then we can write

f=upip2---

where u nonzero and p; irred polys. This is unique up to reordering.

Reducibility and Linear Factors

Let F' a field and f € Flz]. If f degree 2 or 3, then f reducible over F iff f has a root in F.

Rational Roots Theorem

Let f € Z[x]. Let a =r/s aroot of f in Q, where r, s coprime. Then r | ap and s | a,, in Z.

Contents, Primitive Polynomials and Gauss’ Lemma

In Z[x], the GCD of all coefficients of a polynomial is its content. If the GCD is one, the polynomial
is primitive. The product of primitive polynomials is primitive. Moreover, it factors into two polys
of degrees 7, s in Q[x] iff it factors into polys of the same degrees in Z[x].
Eisenstein’s Criterion
Let f € Z[z]. Then if there is prime p s.t.

°pfap

e p|a;foralli<n
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°P2Ta0

then f irred over Q.

Cyclotomic Polynomials
™ — 1 is divisible by z — 1:
2" —1=(z— 1" +2" 2+ -tz +1)

if p prime, then the cyclotomic polynomial for p is

P —1
Pp(r) = —— =a +aP P+ ot

which is always irred over Q by Eisenstein’s.

Irreducibility in Z and Z,
Let f € Z[z] of degree at least 1, let p prime, and let f be f mod p. Then if

o deg f =deg f
e f irred over Ly,

then f irred over Q.

Principal Ideals and PIDs

An ideal is principal if it can be generated by a single element a. If so, it can be written as (a).
An integral domain D is a principal ideal domain if every ideal in D is a principal ideal.

Any field F is a PID by the results from ideals.

Prime and Maximal Ideals in Polynomial Rings

Let F be a field. Anideal I = (p(x)) is a prime ideal in F[z] iff p(z) irred over F. I is an maximal
ideal if it is nontrivial.

Divisions of Irreducible Polynomials

Let f,g € F|x] irred polys, s.t. f # cg for any unit ¢ € F[x]. Then
o ged(f,g) =1
e there are u,v € Flx] s.t. 1 =uf +vg

e v is the multiplicative inverse of f in F/ (g)
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Chinese Remainder Theorem

Let F' be a field and let
I; = (gi(z))

with @ = {1,...,n}, be ideals in Fx] s.t. all g;s are paiwise coprime. Let fi,..., f, be polys in
F[z], then

e thereis f € Flz]| s.t. f— fi € I; for all i

e f uniquely determined up to congruence modulo the ideal J = ([ gi(x))

Corollary to CRT, Polynomial Rings modulo Primal Ideals
Let F' be a field and let I; = (g;(z)) be ideals and g¢; pairwise coprime, and let J = (][] ¢i(x)). Then

Fla]/J = Flz]/I; x -~ x Flz]/I,,

Euclidean Domains

An integral domain D is called a Euclidean Domain if there is a function v : D \ {0} — Z* U {0}
from the set of nonzero elements of D to the set of nonnegative integers s.t.

e for nonzero z,y € D, v(z) < v(xy)

e given a,b € D with b nonzero, there are g, € D s.t. a = ¢gb+ r with either r = 0 or
v(r) < v(b)

where ¢ is called the quotient and r is called the remainder in the division.
The domain of Gaussian Integers Z][i] is a Euclidean domain.

Every ED is a PID.

GCDs on EDs

Let D be a ED and a,b € D two nonzero elements of D. Then there exists an element d € D s.t.
e disa GCD of ¢ and b

e there are u,v € D s.t. d =ua + vb

Associates

Let R be a commutative ring with unity. a,b € R are associates if a = ub for some unit v € R.
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Properties of Euclidean Functions v

Let D be a ED. Then
e v(1) <v(a) for all nonzero a € D

e (1) =v(a) iff a a unit in D

Irreducibility vs Primality
Let D be an integral domain and a € D nonzero nonunit. Then
e ¢ irreducible if ¢ = zy implies x or y unit.
e ¢ prime if a | xy implies a | z or a | y.
In an integral domain, every prime is irreducible.
In a principal ideal domain D, p € D irred iff I = (p) is a maximal ideal in D. Moreover, a nonzero
p is prime iff it is irred.
Unique Factorization Domain

An integral domain D is said to be a unique factorization domain (UFD) if the following are satisfied

e every nonzero nonunit ¢ € D can be written as the product of irreducibles p; € D:
a=Dpip2---Pn

o if
a=p1...Ppp="T1...Tg

where p;, r; irred, then 7 = s and ¢; can be renumbered so that p; and ¢; are associates in D

in a UFD, a nonzero element is prime iff it is irred.

Every PID is a UFD.

Ascending Chain Condition

Let D be a PID, and let I; C I, C I3 be an ascending chain of ideals. Then there exists a positive
integer n s.t. I, = I, for all m > n.

The Ascending Chain Condition (ACC) holds in an integral domain D if D contains nos trictly
increasing infinite chain of ideals.
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Existance of Irred Divisor

Let D be a PID and a € D nonzero nonunit. Then a has at least one irred divisor. Moreover, it is
a product of irreds.

Generalized Gauss’ Lemma

Let D be a UFD and let f, g primitive polys in D[x]. Then fg is primitive.

UFD through Polynomial Rings

If D a UFD then Diz| a UFD.

Primes over Gaussian Integers
Let z = a + bi € Z[i] be s.t. v(z) = a® + b? is prime in Z, then z = a + bi is prime in Z[i).

Consequently, if p can be written as a sum of squares, i.e. p = a® + b, then a + bi is prime in Z][i].

Fermat’s Theorem on Sums of Squares
Let p be an odd prime. Then

p=a’+1? = p=1 mod4

Primes in Gaussian Integers

If a + bi a prime in Z[i], then so is a — bi.

If a, b nonzero and a + bi prime in Z[i], then a? + b? prime in Z.

All the primes in Z[i] are exactly the following elements and their associates:
e l+iand1l—¢
e p prime with p =3 mod 4

e o+ bi and a — bi, where a® 4+ b*> = p a prime with p =1 mod 4

Vector Spaces

A set V equipped with two operations (addition and multiplication) is a vector space over F' if V'
is an Abelian group under addition, and the following holds for all a,b € F', u,v € V:

e av € V is defined
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o a(v+w) =av+aw

e a(bv) = (ab)v

e lv=vw
v € V is called a vector. The additive identity on V is the zero vector 0. An element a € F is a
scalar, and the operation of forming av is called scalar multiplication.

Properties of Scalar Multiplication

Let V be a vector space over a field F'. Then for any scalar ¢ € F' and any vector v € V

ecv=0iffce=0€Forv=0eV
o (—c)v=—(cv) =c(—v)

Subspace Test

A nonempty subset U of a vector space V over a field F' is a subspace of V iff for all ¢ € F' and
u,w € U we have

o u—welU
e cucU

which is very similar to a subring test.

Any ideal in F[x] where F a field is a subspace of F[z].

Linear Independence, Bases and Dimensions
The set {v;} with v; € V where V' VS over F is linearly independent over F' if
c1v1 + coua + -+ + U = 0

implies that ¢; = 0 for all ¢. In other words, the only linear combination of the vectors which leads
to zero is trivial.

Such set of vectors is called a basis for V over F' if the span of this set is V.
Any two basis of V over F' have the same cardinality.

The cardinality of a basis of such vector spaces is called the dimension of V over F. If there exists
no finite basis for V, then V is infinite dimensional over F.

10
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Extendability of Base

Let V' be a vector space over a field F' with dimpV = n, and let {ui,...,u,} be a linearly
independent set of vectors in V. Then

e r<n

e if r < n then we can add n — r vectors to the set to form a basis for V'
Let U, the spans of {uy,...,u,} be a subspace of V. Then

o dimpU < dimpV

Extension Fields
Let E a field and F' C E a subfield of E. Let o € E. Let
Flo] ={f(a): f(x) € Flz]}  F(a) ={f(a)/g(e): f(x),9(x) € Flz], () # 0}
then
e F[a] is the smallest subring of E containing F and «
e F(«) is the smallest subfield of E containing F' and «

specifically, F'(«) is an extension field of F', and is read F' adjoining «.

Kronecker’s Theorem

Let F' be a field and p(x) a nonconst polynomial in F'[x]. Then there is an extension field of F', E,
s.t. a € E is a root of p(z).

Algebraic and Transcendental Numbers

Let F be a field and F an extension field, F' C E. Then an element o € F is said to be algebraic
over F'if there exists a nonzero polynomial f € F[z] s.t. f(a) = 0. Otherwise, « is transcendental
over F.

Minimal Polynomials and Degrees of Algebraic Numbers

Let F' C F fields and a € E algebraic over F'. Then there is a unique monic polynomial p(x) € F[z]
s.t.

* p(a) =0

e p(z) irred over F

11
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o if f € Flx] s.t. f(a) =0, then p(x) | f(x)

such p(x) is called the minimal polynomial of a over F'. The degree of o over F' is

degp(a) = degp(z)

Priperties of Minimal Polynomials

Let ' C FE be fields, a € E algebraic over F' with degp(a) = n, and let p(x) be the minimal
polynomial of .. Then

o F(a) = Flz]/ (p(x))

2

° {1, a,a”, ... ,a”fl} is a basis for the vector space F(«a) over F'

e dimp F(a) = degp(a) = degp(x)

Algebraic and Finite Extensions
Let F be an extension field of a field F'. Then E is
e an algebraic extension of F' if every element o € E is algebraic over F

e a finite extension of F' if F is a finite-dimensional vector space over F'. In this case, the
dimension n of E over F by [E : F| = n, and we call n the degree of E over F'

If F is a finite extension of F, then it is an algebraic extension of F'. Moreover,
degp(a) < [ : F

for every a € E.

Degrees of Extensions and Elements Within

Let E be a finite extension field of a field F' and K a finite extension field of £. Then K is a finite
extension field of F' and
[K:F]=[K:E|E:F|

Moreover, let o, f € E, with degp(a) = n,degp(5) = m. Then n,m | [E : F|, and [F(a, ) : F] <
nm.

Algebraic Numbers

Let Q = {a € C : « algebraic over Q}. Then Q is called the field of algebraic numbers.

12
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Splitting Fields

Let f € F[z] nonconst, and E extension field of F. f splits over E if in E[z], f can be written as
a unit times monic linear factors:

f(z) = u(@ — an)(z — an)
note u € F. A subfield K of E containing F' is called the splotting field in E of f over F' if
o f splits over K
e K is the smallest subfield of E containing F' over which f(z) splits
More precisely, the splitting field in this case is K = F(aq,...,qn).

For any nonconstant f € F[z], it has a splitting field E that is a finite extension field of F.
Moreover,
[E: F] <nl!

any two splitting fields of f are isomorphic to each other.

10.3.20

This is too long. Don’t wanna write it down.

Algebraic Closure

A field F' is algebraically closed if every nonconst f € Flx] has a root in F. Moreover, it is
equivalent to the following:

o fc Flx]irred iff deg f =1
e every nonconst poly in F[z] splits over F'
e if F is an algebraic extension of F', then £ = F

The Fundamental Theorem of Algebra states that C is algebraically closed.

List of Facts

For any nonconst f € Q[z], there is a splitting field K C C.

If E is an extension field of C and [E : C] > 1, then FE is not an algebraic extension of C and [E : C]
is infinite.

Let f € R[z] nonconst, then if f irred, it has degree 1 or 2.

13
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Finite Fields

Let F be a finite field, then
e the order of F' is a prime power: |F| = p", where p =chF.

e Fis an algebraic extension Z,(«), where « is the root of an irred monic poly ¢(x) € Zy[z] of
degree n

Moreover, |F| = p™ iff F' is a splitting field of f(z) = 2P — z over f € Z[x]

Multiplicity and Roots
Let F be a field, f(x) € Flz] a poly, and f(a) = 0 for an « in some extension field of F. Then «
has multiplicity > 1 iff f'(«) = 0.
More Results on Finite Fields
Given any prime p and any positive integer n,
e there exists a finite field F' of order p™

e any two fields of order p™ are isomorphic

Constructible Numbers

The set of constructible real numbers C' is an extension field of Q and a subfield of R. Specifically,
let v be a constructible real number with \/a > 0, then y/« is constructible.
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